Tarea n° 4 – Ecuaciones diferenciales – Grupos 12 y 18

Buenos días estimad@s estudiantes¡¡

Espero hayan tenido una buena noche (independiente si acostumbran o no a “celebrar” estas fiestas navideñas..en fin). A continuación les dejo el link de la tarea n° 4 (recuerden que un 25% de la nota final consta de las tareas que hemos venido desarrollando a lo largo del semestre):

Tarea n° 4 ED

Fecha de entrega: próximo viernes 16 de diciembre

El tema corresponde a transformada de funciones discontinuas y periódicas, pdf que les colgué el día de ayer.

La pueden entregar en parejas.

Vuelvo y reitero: cualquier inquietud y/o comentario no duden en postearlo 😛

Saludos a todo@s¡¡¡¡¡¡¡¡¡¡¡¡¡

9 comentarios en “Tarea n° 4 – Ecuaciones diferenciales – Grupos 12 y 18

    • Gracias profe, una pregunta: me enredé con la transformada de (exp(-t)sin(t))u(t – 3) que sale en el punto 2b de la tarea.

      ya que tendria que expresar la funfion g(t) que en este caso es el producto de la exponencial por seno en terminos de g(t + 3) no es asi? se me vuelve un enredo con lo de las traslaciones en s y en t…

  1. Hola profe, le escribo por tengo problemas con la demostracion del punto 3 de la tarea, la verdad no se pero me da algo refeo , mejor dicho no lo estoy haciendo bien. me podria explicar mas o menos como es q es la cosa. GRACIAS PROFE Y FELIZ NOCHE

  2. Hola Profe, en el primer punto no estoy seguro de como es q se haya g(t), ya lo hice y me dio g(t)=3sen(t)-[3sen(t)u(t-2pi)], pero no me siento 100% seguro q sea asi. Podria ayudarme con esta duda porfa?
    Gracias

    • Si señor, aunque esta función no estaría definida en 2pi, para efectos de cálculo de la transformada no hay lío (dado que la discontinuidad es de salto)

  3. Muchacho una preguntica
    Lo q pasa es q el dia d ayer se me fue imposible ir a clase, a las 4 (4-6), pro ps yo fui a eso d faltando un cuarto para las 6, ha entregar el aprcial, pro no habia nadie.
    Alguien me podria dcir si fue q no hubo clase, o si la profe recogio el aprcial y se fue.
    Muchas gracias

Deja un comentario

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s